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Extracellular vesicles were initially known as cellular waste carriers, while recent 

studies demonstrate that extracellular vesicles play important biological roles in all 

aspects of life-from single cells to mammalians. Their pathophysiological roles in 

some diseases like cancer are being decoded. Extracellular vesicles are divided into 

some classes and there are different strategies to isolate them. Regenerative medicine 

is a collective term which comprised of different approaches to heal and repair 

damaged tissues and organs. A wide spectrum of options in regenerative medicine, 

makes this more dynamic field, which is appealing prospect for cell therapists and 

tissue engineers. EVs derived from mesenchymal stem/stromal cells and other 

probable sources are one of the options on the table to regenerate damaged tissues 

with lower risks, but their potential roles have not been fully elucidated. This cell-

free based approach inspires cell therapist and tissue engineers in order to control 

immune reactions as well as regeneration at the same time. 
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Introduction 

Nowadays, it has been demonstrated that cells 

from different organisms, from eukaryotes to 

prokaryotes can release vesicular bodies into the 

extracellular environment (1, 2). Extracellular 

vesicles (EVs) are considered as significant factors 

in inflammation and immune responses, antigen 

presentation, cancer progression and metastasis, 

immunomodulation, coagulation, tissue regeneration, 

organ repair, cell-cell communication, senescence, 

proliferation and differentiation, etc. in the body (2-

5). Since they were discovered in the last decades of 

twentieth century, always there have been different 

opinions about their functions. Though EVs were 

initially known as cellular waste carriers, 

introducing fundamental features revealed that 

these nano/micro-sized particles play important 

biological roles in all aspects of life-from single 

cells to mammalians (6, 7). EV is a collective term 

which refers to heterogeneous cell-secreted 

structures comprised of a bilayer phospholipid 

membrane surrounding a wide range of 

macromolecules including proteins, lipids, and 

nucleic acids (e.g., cell specific antigens, surface 

markers, adhesion molecules, ligands, receptors, 

enzymes, miRNAs, lncRNAs, mRNAs, growth 

factors, etc.) (5, 8). According to parameters like 

their various biochemical, morphological, and 

biogenesis, EVs are classified into two groups; 
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exosomes and ectosomes (9). The term ‘exosome’ 

was initially used for vesicles with sizes about 30-

200 nm which were released from a wide range of 

cultured cells (i.e., their exact origin was not 

determined) and carrying 5ʹ-nucleotidase activity 

(5, 10). Currently, the term exosome is adopted to 

refer to intraluminal vesicles (ILVs) formed by 

reverse budding of endosomal membrane and 

finally secreted upon fusion of multivesicular 

endosomes (MVE) or late endosomes with plasma 

membrane (2, 9). On the other hand, ectosomes or 

microvesicles with sizes about 50-5000 nm, are 

directly shed from plasma membrane and released 

into intercellular space (11).  

To date, five different isolation methods of EVs 

including; ultracentrifugation-based methods, size-

based methods, Immunoaffinity capture-based 

methods, precipitation-based methods, and 

microfluidic-based methods have been developed 

(12) (An schematic illustration of the most prevalent 

methods for isolation of EVs, is shown in Figure 1). 

There are potential advantages and disadvantages 

for each method, which researchers should be 

considered in choosing an appropriate method based 

on their needs and possibilities. The 

ultracentrifugation-based method (UC) is a gold 

standard method in isolation of extracellular 

vesicles. In this method, a heterogeneous mixture is 

subjected to a centrifugal force and particles in the 

mixture can be separated according to their physical 

properties as well as density and viscosity of the 

solvent (12). There are more additional steps in 

order to obtain desired particles. In the first step, a 

low speed spin (300 × g) is needed to eliminate dead 

cells and bulky debris. After depletion of larger 

particles, 2,000 × g centrifugal force is applied to 

eliminate remaining cells and debris. In the next 

step, larger EVs like microvesicles are pelleted in 

the forces which varies among laboratories (10,000-

20,000 × g). EVs are then pelleted at high speed spin 

(100,000-120,000 × g) (13, 14). One drawback of 

ultracentrifugation is co-precipitation of protein 

aggregates, nucleosomal fragments and apoptotic 

bodies, which results in less purity of final extracts. 

Therefore, often UC is used in combination with 

density gradient (DG) methods like sucrose density 

gradients or sucrose cushions which separate EVs 

according to their floatation densities (15). Using 

volume-excluding polymers like polyethylene 

glycol (PEG) is another option for isolation EVs 

from diverse biofluids. In this method, the precipitate 

can be isolated using low speed centrifugation or 

filtration. Polymer-based precipitation is an easy to 

use method, which does not need any requirements 

or specialized equipment (16), but there are some 

concerns about the purity of final extracts (14). In this 

short review, the intent is not to provide an extensive 

review about the isolation methods of EVs. Herein, 

promising breakthroughs about utilization of EVs in 

regenerative medicine are highlighted.  

Regenerative medicine 

Regenerative medicine is defined as various 

approaches and actions to replace lost tissue(s) with 

new tissues/cells or enhance regeneration of 

damaged tissues in a broad spectrum of indications 

(e.g., myocardial infraction, osteoarthritis, lung 

diseases, acute kidney injuries, chronic wounds, 

muscular dystrophies, bone and cartilage defects, 

etc.) (4, 5, 17-19). There are different strategies 

towards tissue/organ regeneration, from cell 

transplantation to utilizing biomaterials alongside 

stem cell therapy, which are called tissue 

engineering (20). Despite stem cell transplantation 

is adopted as one of the major approaches in 

regenerative medicine, it exhibits some limitations. 

Transplanted cells might be tumorigenic in some 

cases or injected stem cells trapped in some organs 

(e.g., inside the lungs) (4). In the recent years, a 

promising strategy has been emerged, which 

facilitates regeneration process and hampers side 

effects of other approaches when used in 

combination with them (5). This cell-free based 

approach utilizes EVs to inspire cell therapist and 

tissue engineers to control immune reactions as well 

as regeneration at the same time. Regenerative 

properties of EVs are, at least in part, attributed to 

their protein and miRNA contents (20). 
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Fig1. Schematic illustration of the most prevalent methods for isolation of extracellular vesicles; A: Ultracentrifuge-based 

methods, B: Sucrose density gradient-based methods, C: PEG precipitation-based methods (AB: Apoptotic Bodies, Ex: Exosomes, DG: 

Density Gradient, MV: Microvesicles, UC: Ultracentrifuge, PEG: Poly-Ethylene Glycol). 
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Extracellular vesicles in regenerative medicine 

 EVs derived from mesenchymal stem/stromal 

cells (MSCs) and other probable sources are one of 

the options on the table to regenerate and repair 

damaged or diseased tissues with lower risks and 

limitations (21). The investigations span a broad 

usage of EVs along with other materials (i.e., cells, 

tissues, biomaterials, etc.) or alone (20, 22). In the 

last few years, numerous studies have been carried 

out in order to reveal the potential roles of EVs, 

especially exosomes, in tissue repair and 

regeneration, but their potential roles have not been 

fully elucidated (21).  

Zhang et al. proposed an approach to increase 

cutaneous wound healing due to collagen synthesis 

promotion based on exosomes secretion of human-

induced Pluripotent Stem Cell-derived MSCs 

(hiPSC-MSC-Exos). They found that proliferation 

and migration of human dermal fibroblasts as well 

as angiogenesis could be affected by concentration 

of exosomes secreted by hiPSC-MSC (23). Balbi et 

al. showed that c-KIT+ human amniotic fluid stem 

cells dynamically released EVs (hAFS-EVs) while 

the cells were under hypoxic conditions. hAFS-EVs 

represented remarkable regenerative and 

immunomodulatory effects on a model of skeletal 

muscle atrophy (HSA-Cre, SmnF7/F7 mice) (24). 

Despite the fact that significant improvements have 

been made in regeneration of bone defects in recent 

years, there are still controversial issues, which shall 

be addressed. Innovative strategies using EVs have 

paved the way for new options in bone and cartilage 

regeneration. In a study carried out by Qi et al., in 

vitro experiments revealed that hiPSC-MSC-Exos 

could enhance cell proliferation, and alkaline 

phosphatase (ALP) activity. Also, mRNA 

upregulation besides increased protein expression of 

osteoblast-related genes were observed. On the other 

hand, in vivo studies showed that hiPSC-MSC-Exos 

dramatically altered bone regeneration and 

angiogenesis in critical-sized calvarial defects in 

ovariectomized rats (25). Liu et al. (26) investigated 

the effects of iPSC-MSC-Exos on osteonecrosis of 

the femoral head (ONFH). Their results revealed an 

increase in proliferation, migration and tube-forming 

capacities of endothelial cells, whereas PI3K/Akt 

signaling pathway was activated by iPSC-MSC-

Exos. As a matter of fact, considering newly 

proposed methods is an inevitable parameter in 

tissue/organ repair and regeneration. Therefore, a 

deep search is prerequisite for handling future 

studies. Table 1 illustrates some translational and in 

vivo studies employing cell/stem cell-derived 

microvesicles and exosomes in the case of 

regeneration and tissue repair in recent years. 

Concluding remarks and future prospects 

Regenerative medicine seeks the most applicable 

approaches to overcome some limitations in tissue 

remodeling, tissue regeneration and organ repair. 

The future medicine will be attributed with the most 

facile recovery methods in personalized medicine, 

which are compatible, economic and possess better 

regenerative effects. A major hurdle in the case of 

cell-based approaches toward regeneration is 

entrapment of injected cells inside some organs like 

lungs. These cells are somehow high-risked due to 

their tumorigenesis. Accordingly, EVs have been 

approved to be reliable substitutions instead of 

direct cell administration. It is still unclear which 

contents/properties of exosomes are capable of 

promoting tissue regeneration. At last but not least, 

by virtue of exosomal engineering, we might be able 

to modify the contents of exosomes by adding 

therapeutic drugs or compounds to enhance their 

regenerative potential in regenerative medicine. 

Moreover, seeking newly proposed strategies like 

combination therapies (i.e., Cell-therapy/EVs, small 

molecule treatments/EVs and Cell Therapy/small 

molecule treatments), will pave the way of a new 

era in the future regenerative medicine. 
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Table 1. In vivo studies employing cell/stem cell-derived microvesicles and exosomes in the case of regeneration and tissue repair 

(Some parts are adopted from Ref. (18) 

Target tissue/Model Cellular Source 
Species-exosome (Origin 

into Target) 
Cell-derived agent Method Dose Reference 

Heart/IR MSC Human into Mouse Exosomes HPLC 0.4 mg (27) 

Heart/infarct MSC Rat into Rat Exosomes (w/GATA4) ExoQuick (4×106  MSC) (28) 

Heart/IR MSC Human into Mouse Exosomes, ATP HPLC 0.1-0.4 mg (29) 

Heart/infarct MSC Human into Rat EVs 100 K × g 80 mg (30) 

Heart/infarct MSC Rat into Rat Exosomes ExoQuick 80 mg (31) 

Kidney/gentamycin MSC Rat into Rat Exosomes 100 K × g 100 mg (32) 

Kidney/cisplatin MSC Human into Rat Exosomes 100 K × g 250 mg (33) 

Brain/TBI MSC Human into Rat Exosomes ExoQuick 100 μg (34) 

Brain/TBI MSC Human into Mouse Exosomes An Chrom 30 mg (35) 

Brain/stroke MSC Rat into Rat Exosomes 100 K × g 100 mg (36) 

Brain/ischemia MSC Human into Ovine EVs PEG (1 × 2 × 107 MSC) (37) 

Brain/TBI MSC Rat into Rat Exosomes ExoQuick 100 mg (38) 

Brain/stroke MSC Human into Mouse Exosomes 110 K × g (2 × 106 MSCs) (39) 

Liver/fibrosis MSC Human into Rat Exosomes 100 K × g 250 mg (40) 

Liver/drug injury MSC Human into Mouse Exosomes 100 K × g 0.4 mg (41) 

Lung/hypoxia MSC Mouse into Mouse Conditioned Medium, Exosomes PEG-S200 0.1–10 mg (42) 

Lung/drug MSC Mouse into Mouse Exosomes 100 K × g 25mg (43) 

Lung/silicosis MSC Human into Mouse Microvesicles ExoQuick 10 mg (44) 

Hypertension MSC Human into Mouse Microvesicles 100 K × g (3 × 106 MSCs) (45) 

Lung/fluid filled MSC Human into Human Microvesicles 100 K × g 160 mg (46) 

Lung/E.coli endotoxin MSC Human into Mouse Microvesicles 100 K × g (9 × 106 MSCs) (47) 

Intestine/enterocolitis MSC Human into Rat Exosomes PureExo 50 ml IP (48) 

Intestine/enterocolitis MSC Rat into Rat Microvesicles 100 K × g 50-200 mg (49) 

Skin/wound MSC Human into Rat Exosomes, Wnt4 100 K × g 200 mg (50) 

Skin/wound MSC Human into Rat Exosomes 100 K × g 160 mg (23) 

Skin/wound MSC Human into Mouse Exosomes, miRNA 120 K × g 100 mg (51) 

Limb ischemia MSC Human into Mouse Exosomes 100 K × g 200 mg (52) 

Skeletal Muscle/cardiotoxin MSC Human into Mouse Exosomes, miR-494 110 K × g 50 μl (53) 

Skeletal Muscle/ALS MSC Mouse into Mouse Exosomes, SOD1 PureExo 0.2 mg/ml (54) 

Wound healing in T2DM nAT-MSCs Human into Mouse Microvesicles 100 K × g (3 × 105 MSCs) (55) 

Cisplatin and 

Glycerol induced 

AKI 

hWJMSC Human into Mouse Microvesicles 100 K × g 100 μg (56) 

Glycerol induced 

AKI 
MSC Human into Mouse Microvesicles 100 K × g 15 μg (57) 

Liver/Model of 70% 

hepatectomy 
HLSCs Human into Rat Microvesicles 100 K × g 15 μg (58) 

Eye/ONC model MSCs Human into Rat Exosomes 100 K × g (1 × 2 × 106 MSC) (59) 

SCI/ model of rat cervical 

avulsion 

Cortical neurons 

treated with the RARβ 

agonist CD2019 

Human into Rat Exosomes 100 K × g 10 μg (60) 

Heart/MI CDCs Human into Mouse Exosomes ExoQuick 3.5 × 108 or 2 × 108 (61) 

ischemia/reperfusion injury and 

partial hepatectomy 
hepatocytes Mouse into Mouse Exosomes ExoQuick 200 μg (62) 

Chronic cutaneous wounds platelet-rich plasma Human into Rat Exosomes 

100 K × g + 30% 

sucrose-D2O 

cushion 

50 μg/ml (63) 

Osteoarthritis 

human synovial 

membrane MSCs / 

iPSC-MSCs 

Human into Mouse Exosomes Ultrafiltration 1010/ml (64) 

Dental Pulp Tissue 

Regeneration 

naïve human dental 

pulp stem cells 

(DPSCs) and human 

bone marrow derived 

stromal cells 

(HMSCs) 

Human into Mouse Exosomes ExoQuick 
1.25 × 106 HMSCs + 

250 × 103 DPSCs 
(65) 

 

Abbreviations 

AKI: Acute Kidney Injury, ALS: Amyotrophic lateral sclerosis, CDCs: cardiosphere-derived cells, DPSCs: naïve human dental 

pulp stem cells, EVs: Extracellular Vesicles, HLSCs: Human Liver Stem Cells, hWJMSC-MVs: human Wharton-Jelly MSCs derived 

microvesicles, iPSC: induced Pluripotent Stem Cells, IR: myocardial ischemia/ reperfusion injury, HPLC: High Pressured Liquid 

Chromatography, PEG: Polyethylene Glycol, MI: Myocardial Infraction, miR: microRNA, MSC: Mesenchymal Stem/Stromal Cell, 

nAT-MSCs: non-diabetic healthy donor adipose tissue derived mesenchymal stem/stromal cells, ONC: Optic Nerve Crush, SCI: Spinal 

Cord Injuries, TBI: Traumatic Brain Injury, T2DM: Type ΙΙ Diabetes Mellitus. 
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